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Fatigue life is probabilistic and not deterministic. Experimentally establishing the fatigue 
life of materials, components, and systems is both time consuming and costly. As a result, 
conclusions regarding fatigue life are often inferred from a statistically insufficient number 
of physical tests. A proposed methodology for comparing life results as a function of 
variability due to Weibull parameters, variability between successive trials, and variability 
due to size of the experimental population is presented. Using Monte Carlo simulation of 
randomly selected lives from a large Weibull distribution, the variation in the L10 fatigue life 
of aluminum alloy AL6061 rotating rod fatigue tests was determined as a function of 
population size. These results were compared to the L10 fatigue lives of small (10 each) 
populations from AL2024, AL7075 and AL6061. For aluminum alloy AL6061, a simple 
algebraic relationship was established for the upper and lower L10 fatigue life limits as a 
function of the number of specimens failed. For most engineering applications where less 
than 30 percent variability can be tolerated in the maximum and minimum values, at least 
30 to 35 test samples are necessary. The variability of test results based on small sample sizes 
can be greater than actual differences, if any, that exists between materials and can result in 
erroneous conclusions. The fatigue life of AL2024 is statistically longer than AL6061 and 
AL7075. However, there is no statistical difference between the fatigue lives of AL6061 and 
AL7075 even though AL7075 had a fatigue life 30 percent greater than AL6061.  

I. Introduction 
common method of engineering design is to use deterministic equations for strength and life. That is, it is 
assumed that at loads and/or times below that calculated, no failure will occur. The calculated lives and load 

limits are usually coupled with a safety factor that is dictated by experience and design code requirements. 
Complicating the issue is that failure is extremely variable and dependent on materials, processing, and operating 
conditions. 

For a finite life where it is assumed that failure can occur, reliability is dictated by the design application. If a 
failure does occur a criteria is that it does not cause injury and secondary damage. A statistical distribution is 
assumed about the calculated value of life or strength. From this method an acceptable life and/or load is determined 
at a predetermined probability of survival. Usually for critical applications that affect human safety and third party 
liability, these assumptions and calculations are re-examined and modified based on field experience, condition 
monitoring and continued inspection of critical components.  

For most products that have an established design and application, product improvement is evolutionary. 
Incremental changes are made to improve product performance, life, reliability, and maintainability as well as to  
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decrease cost of manufacture. As the criticality (usually with respect to safety) of the designed component increases, 
the required probability of survivability for a given application increases.1 Usually, for critical applications with 
competing failure modes, fatigue becomes the failure mode that limits the components life. That is, if the component 
does not fail from other causes, fatigue is the limiting mode of component failure (assuming that the component has 
been operated at stresses above which fatigue can occur, that is, above the material’s fatigue limit). 

Fatigue life is probabilistic and not deterministic. For example, it is not uncommon to find the ratio of longest to 
shortest fatigue life of bearings to be 20 to 1 or greater.2 A sound knowledge of material fatigue life is thus essential 
to a good design. Experimentally establishing the fatigue life of materials, components, and systems is both time 
consuming and costly. As a result, conclusions regarding fatigue life are often inferred from a dangerously 
insufficient number of physical tests. 

In 1939, Weibull3–5 developed a method and an equation for statistically evaluating the fracture strength of 
materials based upon small population sizes. The method can be and has been applied to analyze, determine and 
predict the cumulative statistical distribution or fatigue failure or any other phenomenon or physical characteristic 
that manifests a statistical distribution. 

Vlcek, Hendricks and Zaretsky6 virtually tested 31 400 rolling-element bearings that were randomly assembled 
by Monte Carlo (random) number generation. The method of Johnson7 was used to plot the virtual data on Weibull 
plots. The Monte Carlo results were compared with endurance data from 51 bearing sets comprising 5321 bearings. 
A simple algebraic relation was established for the upper and lower L10 life limits as a function of the number of 
bearings failed for any bearing geometry. There was a fifty percent (50 percent) probability that the resultant bearing 
life will be less that that calculated. The maximum and minimum variation between the bearing resultant life and the 
calculated life correlated with the 90-percent confidence limits for a Weibull slope of 1.5.  

From the above described Monte Carlo analysis, Vlcek, Hendricks and Zaretsky6 established rules to compare 
and distinguish tests of identical bearings either from two or more sources or made from different manufacturing 
sources and/or materials. These include variability due to Weibull parameters, variability between successive trials, 
and variability due to size of the experimental population with which the initial Weibull parameters were 
determined.  

Zaretsky, et al.,8 extended this method to compare two computational models to determine the fatigue life and 
reliability of a commercial turboprop gearbox with each other and with field data from 64 gearboxes. These models 
were (1) Monte Carlo simulation of randomly selected lives of individual bearings and gears comprising the system 
and (2) two- parameter Weibull distribution function for bearings and gears comprising the system using strict-series 
system reliability to combine the calculated individual component lives in the gearbox. A series of equations were 
empirically developed from the Monte Carlo simulation to determine the statistical variation in predicted life and 
Weibull slope as a function of the number of gearboxes failed. These results were successfully compared to field 
data from the 64 gearboxes. 

In view of the aforementioned, the following are objectives of the work reported herein: (a) to determine a 
methodology for comparing life results as a function of variability due to size of the experimental population; (b) to 
determine the variation in the fatigue lives of aluminum alloy AL6061 rotating rod fatigue specimens and 
distribution parameters as a function of sample size using Monte Carlo simulation; and (c) compare the resultant 
fatigue life results from AL2024 and AL7075 to that of AL6061. 

I. Apparatus, Specimens, And Procedure 
Fatigue lives of notched, rotating 12.7-mm- (½-in.-) diameter by 101-mm- (4-in.-) long aluminum AL6061 rods 

were determined using a commercial rotational fatigue tester. This test is commonly referred to as either the Krause, 
Budd, or Vishay fatigue test. Figure 1 is a schematic of the primary components of the rotational fatigue tester. 

The notches in the test sample were cut on a lathe using a tungsten carbide tool insert. No surface finish or polish 
was performed on the cut surface. The notches were located midway 50.8 mm (2 in.) along the length of the test 
sample (see Fig. 1 insert). The reduced diameters of the shafts at the notches were 6.35 mm (0.25 in.), and the walls 
of the notch were at a 60° angle. 
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For each test, one end of the test sample was mounted in a 12.7-mm- (½-in.-) diameter rotating collet. The test 

sample extended from the collet as a horizontal cantilever (Fig. 1). The free end was then mounted in a collet that 
was part of a symmetric, tapered shaft extension. The collet was rotated by a variable-speed electric motor. A 
bearing from which a constant load was suspended was placed on the free end of the tapered shaft extension. As a 
point on the surface of the test specimen rotates about the axis, it experiences a sinusoidal load that is totally 
reversing each rotation of the shaft. By sliding a weight along a balance arm on the apparatus, the bending stress at 
the minimum sample cross section can be varied from 0 to 900 MPa (130.3 ksi). For this study, all tests were 
conducted at a bending stress of 157.2 MPa (22.8 ksi). All tests were performed at room temperature and 7500 rpm, 
and each test was conducted to failure; there were no suspensions or censoring of the data. 

II. Statistical Analysis 

A. Weibull Analysis  
In 1939, W. Weibull3–5 developed a method and equation for statistically evaluating the fracture strength of 

materials. He also applied the method and equation to fatigue data based upon small sample (population) sizes, 
where the two-parameter expression relating life, L, characteristic life, Lβ and probability of survival, S is 
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When plotting the ln ln [1/S] as the ordinate against the ln L as the abscissa, fatigue data are assumed to plot as a 
straight line (Fig. 2). The ordinate ln ln [1/S] is graduated in statistical percent of components failed or removed for 
cause as a function of ln L, the log of the time or cycles to failure (Fig. 3). The tangent of the line is designated the 
Weibull slope e, which is indicative of the shape of the cumulative distribution or the amount of scatter of the data. 
The method of using the Weibull distribution function for data analysis for determining component life and 
reliability was later developed and refined by L.G. Johnson.7 

The Johnson-Weibull method has been in continual use by NASA for over 50 years to statistically analyze 
cumulative failure data such as occurs in bearings and gears for which an extensive data base now exists in the open 
literature.9 The method allows for reasonable engineering estimates and comparisons of cumulative life distributions 

Figure 2. Generic Weibull plot where (Weibull) 
slope of line is e; probability of survival, Sβ, is 
36.8 percent at which L = Lβ, or L/Lβ = 1. Figure 1. Schematic of Vishay rotating fatigue tester 

and test specimen geometry insert. 
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with small sample sizes or populations. The Weibull parameters were determined using a spreadsheet program that 
generates Weibull plots. 

The Weibull slope of the resultant Weibull plot approximates the statistical distribution of the data. As an 
example, a Weibull slope of 1 approximates an exponential distribution. A Weibull slope of 2 approximates a 
Raleigh distribution. A Weibull slope of 3.57 approximates a Gaussian or normal distribution. The resulting values 
of life compare reasonably well with other statistical distributions such as log normal. However, the ease of use and 
consistency of results offers an advantage of the Johnson-Weibull method over these other distribution functions.  

B.  Monte Carlo Analysis  
To determine the input parameters for the Monte Carlo simulation a total of 357 aluminum alloy AL6061 

rotating test rods (Fig. 1) were tested to failure. A Weibull plot (Fig. 3) was computer generated for these data. The 
individual data points were omitted from Fig. 3 for purposes of clarity. From these results, the Weibull parameters 
were as follows: Weibull slope e = 2.878, Lβ = 79 457 stress cycles, and L10 = 36 354 stress cycles. These values are 
summarized in Table 1 and will be referred to as the experimental “baseline” values for comparison purposes. 

For purposes of Monte Carlo simulation, it was assumed that there were 1000 virtual aluminum AL6061 rod 
specimens contained in a virtual bin. According to the method of Johnson,7 each rod specimen in the bin is assigned an 
order number (1, 2, 3,…1,000) which is also the order in which they would fail. The life of each component at the 
probability of survival corresponding to the randomly selected rank can be determined using Eq. (1), knowing the 
survivability (from the order and ranking), characteristic life, and Weibull slope from the experimental “baseline” values.  

Using Monte Carlo techniques,10 various-sized groups or populations were randomly assembled from the virtual 
bin. This group or population represented failure distributions of varying sizes; sizes of 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 
18, 20, 22, 24, 26, 28, 30, 35, 40, 45, 50, 75, 100, 125, 150, 175, and 200 were arbitrarily selected. At population sizes 
greater than 30, the interval between population size was 
increased. Each random number generated within a population 
corresponded to an order number of a component in the virtual 
bin, with which an associated failure life was determined. From 
each population size n, a distribution of associated lives was 
thus determined. 

Next, this distribution of fatigue lives was sequentially 
ranked and then reordered according to the method of Johnson.7 
From the order number, a percent survivability was determined 
corresponding to each fatigue life using median ranks.  

A curve fit of a Weibull plot with the independent 
variable of the natural logarithm of the life (ln L) and a 
dependent variable of the natural logarithm of the natural 
logarithm of the inverse of the probability of survival (ln 
ln(1/S)) was created. A straight line was fitted to these n data 
points or number of specimens failed using the method of 
least squares. The Weibull slope and the L10 life were 
determined from the resultant line.  
For each value of n, the procedure was repeated 21 times to 
estimate variation between trials and to determine the 
maximum, minimum, and median values for  each series of 
21 trials. Ninety percent of the trials (19 trials) were bounded 
by the maximum and minimum L10 life values. This entire 
process in turn was repeated 10 times to establish statistical 
variation between repetitions. Thus, the lives and slopes 
reported herein are averaged values from these 10 repetitions. 
These results are shown in Fig. 4. 

Best-fit curves obtained using the linear regression package 
of a commercial spreadsheet were fitted through the points for 
the minimum and maximum values shown in each of the plots 
of Fig. 4. The maximum and minimum variation in the 
distribution of the fatigue data as measured by the variation in 
the Weibull slope (Fig. 4 (b)) decreased as the number of test 
samples in a population increased. 

Figure 3. Weibull plot of fatigue life of 
aluminum alloy AL6061 rotating test rods. 
Number of failures, 357 (failure points omitted 
from Weibull plot for clarity); bending stress 
range, 0 to 157.2 MPa (22.8 ksi); speed, 
7500 rpm; temperature, room. 
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The bounds on the maximum and minimum L10 life values (Fig. 4(a)) were derived for each set of the respective 

curves as follows: 

 Maximum L10 Life = Baseline L10 Life (1 + 2n–0.53) (2a) 

 Minimum L10 Life = Baseline L10 Life (1 – 1.25n–0.4) 

 where n > 2 (2b) 

 Minimum L10 Life → 0 where n ≤ 2 (2c) 

where n is the number of specimens failed. 
To facilitate comparison, the results of Fig. 4(a) are presented using percent variation in L10 life. The percent 

variation in L10 life is then expressed as Eq. (2): 

 100lifeinriation Percent va
baseline,

baseline,Carlo Monte, x
L

LL
 L 

10

1010
10

−
=  (3) 

The normalizing value L10,baseline is 36,354 cycles. These results are plotted in Fig. 5. 

C. Monte Carlo Verification 
In order to verify the Monte Carlo simulation, the 

experimental data for the aluminum alloy AL6061 was 
ordered in the sequence in which they were tested, 
independent of the actual experimental lives. Using 
Weibull analysis, the L10 lives of 21 sequential sets of 3 
each test specimens (n = 3) were determined for the first 
63 specimens tested. Next, the L10 lives of 21 sequential 
sets of 5 each test specimens (n = 5) were determined for 
the next 105 specimens tested. Last, the L10 lives of 21 
sequential sets of 9 each test specimens (n = 9) were 
determined for the next 189 specimens tested. The 
results were compared to the maximum and minimum 
values of Fig. 4(a) and Eqs. (2a) and (2b). The L10 lives 
of each of the subgroups fell on or within the maximum 
and minimum values of Fig. 4(a) as defined by Eq. (2). 
There was very good agreement between the maximum 
and minimum values of the respective L10 lives. 

Figure 5. Maximum and minimum variation of L10 life 
as a function of number of specimens failed normalized 
to L10 life equal 36354 cycles. (Data from Fig 4(a)). 

Figure 4. Maximum and minimum variation of L10 life and Weibull slope as a function of number of specimens 
failed for aluminum alloy AL6061 rotating test rods. (a) Fatigue life variation. (b) Weibull slope variation. 
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III. Results and Discussion 
Incremental changes are made to improve product performance, life, reliability, and maintainability as well as to 

decrease cost of manufacture. As the criticality (usually with respect to safety) of the designed component increases, 
the required probability of survival for a given application increases. Usually, for critical applications with 
competing failure modes, fatigue becomes the failure mode that limits the components life and reliability. Fatigue 
life is probabilistic and not deterministic. Experimentally establishing the fatigue life of materials, components, and 
systems is both time consuming and costly. As a result, conclusions regarding fatigue life are often inferred from a 
statistically insufficient number of physical tests.  

A. Comparing Life Results 
From the results of the Monte Carlo simulation of the L10 life of aluminum alloy AL6061 (Figs. 4 and 5), there is 

an even (50 percent) probability that the resultant L10 test life for any randomly selected test group of the same 
material will be greater or less than its established baseline life. As the number of specimens in a test group 
increases, the magnitude of the variation in life decreases. From these observations rules can be established to 
compare and distinguish tests of identical or different aluminum alloys either from one another, two or more 
sources, or made from different processing methods. The following rules are suggested: 

 
1. If the L10 life of the material is between the Maximum and Minimum L10 life variations, there can be no 

conclusion that there is a significant difference between the new material and the baseline material regardless 
of the ratio of the L10 lives. The new material is acceptable for its intended application (Fig. 6(a)). 

2. If the L10 life of the new material is less than the minimum variation, the new material is not acceptable for its 
intended application (Fig. 6(b)). 

3. If the L10 life of the new material is greater than the maximum variation, there exists a significant difference 
between the materials with the new material being superior for its intended application. (Fig. 6(c)). 

4. If the L10 life of the new material is greater than the baseline life (zero variation) but less than the maximum 
variation, there can be no conclusion that there is a significant difference between the new material and the 
baseline material regardless of the ratio of the L10 lives. The new material is acceptable for its intended 
application (Fig. 6(d)). 

Figure 6. Rules for comparing material specimen fatigue life results to AL6061 (based on Fig. (5)). (a) New
material is acceptable. (b) New material is not acceptable. (c) New material is superior to baseline material. 
(d) New material is acceptable. 
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B. Experimental Life Results 
With a reasonable understanding of how the Monte Carlo simulations responded to variations in inputs, it is 

possible to compare fatigue data for aluminums AL7075 and AL2024 with that of aluminum AL6061. Ten (10) each 
rotating notched rod fatigue tests were conducted for AL7075 and AL2024, respectively. Baseline verification  
tests were conducted with 10 additional specimens of aluminum AL6061. These tests were conducted at a bending 
stress of 157.2 MPa (22.8 ksi), 
room temperature and a speed of 
7500 rpm. Each test was 
conducted to failure; there were 
no suspensions or censoring of 
the data. Using Eq. (3) the 
resultant L10 lives of the 3 
materials were compared to the 
L10 life from the baseline tests of 
the 357 test samples of AL6061 
(L10 = 36 354 cycles). The results 
are summarized in Table 1.  

Referring only to the 
resultant L10 lives based upon 10 
test specimens for each 
aluminum alloy, the materials would be intuitively ranked in the order of their relative L10 lives. That is, AL2024 
first, AL7075 second, and AL6061 third. There is a strong suggestion that the AL7075 has a 30 percent higher life 
than AL6061. However, referring to the baseline tests of AL6061 and to the Monte Carlo results (Fig. 4), and using 
the criteria of Fig. 6 to compare results, it can be reasonably concluded that AL2024 is statistically superior to the 
other 2 alloys. However, there is no statistical difference between AL6061 and AL7075. The variability of test 
results based on small sample sizes can be greater than actual differences, if any, that exists between materials and 
can result in erroneous conclusions. It is worth noting that the L10 life of even the baseline material (AL6061) differs 
between that determined for only 10 trials (Table 1) and the baseline of 357 trials by 35 percent. 

C. Minimum Population Size and Probabilistic Variability 
Engineers and designers tend to consider fatigue lives as absolutes, when actually there is probabilistic 

variability associated with reported values. There is a significant range between the maximum and minimum  
90-percent bounding fatigue lives for small population sizes of 2 to 10, where the percent variation exceeds  
100-percent (Fig. 5). For population sizes ranging from 14 to 25, the range between the maximum and minimum L10 
life continues to decrease, but nonetheless has differences of 75 to 100 percent variation. It is not until 30 to 100 
samples are tested that these differences in minimum life begin to level at 40 to 60 percent variation.  

The minimum life locus is most likely used in conservative designs and was thus focused on herein. Again, there 
is a significant variation between the simulated and calculated minimum lives for small population sizes of 2 to 6. 
This difference is nearly 100 percent. The difference decreases significantly with increasing sample size. Over the 
range of 10 to 28 specimens, the simulated minimum life differs from the known calculated life by about 50 percent. 
At approximately 30 specimens, the difference is less than 30-percent variation, and at 70 specimens the difference 
is less than a 20-percent variation. It should be noted that even for 200 test specimens, there is still a range observed 
between the upper and lower 90-percent bounding curves. This range is within 15 percent.  

Vlcek, Hendricks, and Zaretsky6 performed a similar Monte Carlo simulation on a bearing system comprising 
three components. While the life of multiple components had to be taken into account, similar trends as those 
evident in Figs. 4 and 5 were observed. Similar observations were also made by Zaretsky, Savage, Lewicki, and 
Vlcek,8 where a Monte Carlo simulation was used to determine the 90-percent bounds on the L10 life of a 21 
component gear box. 

The number of fatigue tests performed is dependent upon the probabilistic variability that can be tolerated. 
Figure 5 helps establish the range in variability associated with fatigue life and test population size. For most 
engineering applications where less than 30 percent variability can be tolerated in the maximum and minimum 
values, at least 30 to 35 test samples are necessary. Design decisions can be made based upon smaller population 
sizes, as long as the inherent increase in variability in the life value and the associated risk are recognized and 
accounted for. 

Table 1. Comparison of Rotating Rod Fatigue Lives of Three Aluminum Alloys 
[Test conditions: Bending stress, 157.2 MPa (22.8 ksi); speed,  

7500 rpm; temperature, room.] 
Aluminum alloy Experimental 

Weibull slope 
Characteristic 

life, 
Lβ (cycles) 

L10 Life 
(cycles) 

Comparison 
to baseline 

L10 life 
(Eq. (3)), 
percent 

aAL6061 2.55 65,249 26,987 –25.8 
aAL7075 2.89 76,226 35,029 –3.6 
aAL2024 6.22 224,304 156,207 331 
bBaseline AL6061 2.878 79,457 36,354 ------- 
aTen (10) test specimens failed. 
bFrom Weibull plot of Fig. 3, 357 test specimens failed. 
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IV. Summary of Results 
Fatigue life is probabilistic and not deterministic. Experimentally establishing the fatigue life of materials, 

components, and systems is both time consuming and costly. As a result, conclusions regarding fatigue life are often 
inferred from a statistically insufficient number of physical tests. A proposed methodology for comparing life results 
as a function of variability due to Weibull parameters, variability between successive trials, and variability due to 
size of the experimental population is presented. Using Monte Carlo simulation of randomly selected lives from a 
large Weibull distribution, the variation in the L10 fatigue life of aluminum alloy AL6061 rotating rod fatigue tests 
was determined as a function of population size. These results were compared to the L10 fatigue lives of small 
(10 each) populations from AL2024, AL7075 and AL6061. The following results were obtained: 

 
1. For aluminum alloy AL6061, a simple algebraic relationship was established for the upper and lower L10 

fatigue life limits as a function of the number of specimens failed. 
2. For most engineering applications where less than 30 percent variability can be tolerated between the 

maximum and minimum L10 fatigue life values, at least 30 to 35 test samples are necessary. Design decisions 
can be made based upon smaller population sizes, as long as the inherent increase in variability in the life 
value and the associated risk are recognized and accounted for. 

3. The variability of test results based on small sample sizes can be greater than actual differences, if any, that 
exists between materials and can result in erroneous conclusions. Based on a test population of 10 specimens 
each, the fatigue life of AL2024 is statistically longer than AL6061 and AL7075. However, there is no 
statistical difference between the fatigue lives of AL6061 and AL7075 even though AL7075 had a fatigue life 
30 percent greater than AL6061. 

4. The maximum and minimum L10 life limits determined experimentally for Aluminum alloy AL6061 rotating 
rod fatigue specimens for test population sizes of 3, 5, and 9 correlated with those obtained from the Monte 
Carlo simulation. 
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